equação Graceli quântica [] G* = = [ ] ω , , / T] / c [ [x,t] ] = |
equação Graceli tensorial quântica [1] G [DR] = .= = |
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
G [DR] = =
G [DR] = =
EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.
G [DR] = .=
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
O comprimento de onda Compton pode ser entendido como uma limitação fundamental na medida da posição de uma partícula, tomando-se as implicações da mecânica quântica e relatividade especial em conta. Isto depende da massa da partícula.
Definições matemáticas[editar | editar código-fonte]
O comprimento de onda Compton de uma partícula é dado por
- ,
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde
- é a constante de Planck,
- é a massa da partícula,
- é a velocidade da luz.
O valor CODATA de 2002 para o comprimento de onda Compton do elétron é 2.4263102175×10−12 m com uma incerteza padrão de 0.0000000033×10−12 m.[1] Outras partículas têm diferentes comprimentos de onda Compton.
Para ver-se isto, note-se que nós podemos medir a posição de uma partícula por incidir luz sobre ela - mas medir a posição precisamente requer luz de pequeno comprimento de onda. Luz de comprimento de onda pequeno consiste de fótons de alta energia. Se a energia destes fótons excede , quando um atinge a partícula onde cuja posição está sendo medida a colisão deve ter suficiente energia para criar uma nova partícula do mesmo tipo. Disto resulta em tornar oculta a questão da localização original da partícula.
Este argumento também mostra que o comprimento de onda Compton é a ponto de interrupção abaixo do qual a teoria quântica de campos – a qual pode descrever a criação e aniquilação de partículas – torna-se importante.
Pode-se fazer o argumento acima um tanto mais preciso como segue-se. Suponhamos que deseja-se medir a posição de um partícula dentro de uma precisão . Então a relação de incerteza para a posição e o momento diz que
então a incerteza no momento da partícula satisfaz
Usando a relação relativística entre momento e energia, quando excede então a incerteza na energia é maior que , o que é suficiente energia paracriar outra partícula do mesmo tipo. Então, com um pouco de álgebra, nós vemos aqui uma limitação fundamental
Assim, pelo menos dentro de uma ordem de magnitude, a incerteza na posição deve ser maior do que o comprimento de onda de Compton .
O comprimento de onda de Compton pode ser comparado com o comprimento de onda de de Broglie, o qual depende do momento de uma partícula e determina o ponto de corte entre o comportamento de partícula e onda na mecânica quântica.
O caso dos férmions[editar | editar código-fonte]
Para férmions, o comprimento de onda de Compton determina a seção transversal de interações. Por exemplo, a seção transversal para a dispersão de Thonsom de um fóton de um elétron é igual a
onde é a constante de estrutura fina e é o comprimento de onda de Compton do elétron. Para bósons gauge, o comprimento de onda de Compton determina a escala da interação Yukawa: desde que o fóton não tenha massa de repouso, o eletromagnetismo tem escala infinita.
O comprimento de onda de Compton do eléctron é um dos do trio de unidades de comprimento relacionadas, as outras duas sendo raio de Bohr e o raio clássico do elétron . O comprimento de onda de Compton é obtido a partir da massa do elétron , constante de Planck e a velocidade da luz . O raio de Bohr é obtido de , e a carga do elétron . O raio clássico do elétron é obtido de , e . Qualquer um destes três comprimentos pode ser escrito em termos de qualquer outro usando a constante de estrutura fina :
- /
- /
Fórmula da variação de Compton[editar | editar código-fonte]
Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[3].
- Luz como uma partícula;
- Dinâmica Relativística;
- Trigonometria.
O resultado final nos dá a equação do espalhamento de Compton:
- /
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
Onde:
- é o comprimento de onda do fóton antes do espalhamento,
- é o comprimento de onda do fóton depois do espalhamento,
- me é a massa do elétron,
- é conhecido como o comprimento de onda de Compton,
- θ é o ângulo pelo qual a direção do fóton muda,
- h é a constante de Planck, e
- c é a velocidade da luz no vácuo.
Coletivamente, o comprimento de onda de Compton é .
A concentração quântica nQ é a concentração de partícula (i.e. onúmero de partículas porunidade de volume) de um sistema onde a distância interpartícula é igual ao comprimento de onda térmico de de Broglie ou equivalentemente quando os comprimentos de onda das partículas são tangentes ("se tocam") mas não se sobrepõe.[1][2]
Efeitos quanticos tornam-se mais apreciáveis quando a concentração de partículas é maior ou igual que a concentração quântica, a qual é definida como:
- /
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
- onde:
- M é a massa das partículas no sistema
- k é a constante de Boltzmann
- T é a temperatura medida em kelvin
- é a constante de Planck reduzida
Como a concentração quântica depende da temperatura; altas temperaturas irão colocar a maioria dos sistemas no limite clássico sem estes terem uma densidade muito alta, e.g. como uma anã branca.
A correlação quântica é a mudança esperada nas características físicas à medida que um sistema quântico passa por um site de interação. Em outras palavras, o termo correlação quântica passou a significar o valor esperado do produto dos resultados nos dois lados.[1] Ela (por exemplo, emaranhamento[2][3] e discórdia[4][5][6]) é uma característica fundamental da mecânica quântica, que é conhecida por estar no centro de várias aplicações em potencial, como codificação superdensa, teletransporte quântico e criptografia quântica.[7]
Testes de Bell[editar | editar código-fonte]
No artigo de John Bell, de 1964, que inspirou os testes de Bell, supunha-se que os resultados A e B pudessem assumir apenas um dos dois valores, -1 ou +1. Concluiu-se que o produto também poderia ser apenas -1 ou +1, para que o valor médio do produto fosse
- /
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde, por exemplo, N++ é o número de ocorrências simultâneas ("coincidências") do resultado +1 nos dois lados do experimento.
Em experimentos reais, porém, os detectores não são perfeitos e geralmente existem muitos resultados nulos. A correlação ainda pode ser estimada usando a soma das coincidências, já que claramente os zeros não contribuem para a média, mas na prática, em vez de dividir por Ntotal, tornou-se habitual dividir por
- /
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
o número total de coincidências observadas. A legitimidade desse método baseia-se no pressuposto de que as coincidências observadas constituem uma amostra justa dos pares emitidos.
Seguindo as premissas realistas locais, como no artigo de Bell de 1964, a correlação quântica estimada convergirá após um número suficiente de ensaios para
- /
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde aeb são configurações do detector e λ é a variável oculta, extraída de uma distribuição ρ (λ).
A correlação quântica é a principal estatística no CHSH e algumas das outras "desigualdades de Bell", cujos testes abrem caminho para a discriminação experimental entre a mecânica quântica, por um lado, e o realismo local ou a teoria das variáveis ocultas locais, por outro.[8][9]
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Comentários
Postar um comentário