equação Graceli  quântica []


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]

 [DR] =            . =  



equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

    G  [DR] =             =

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .



     G  [DR] =             =

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .





comprimento de onda Compton pode ser entendido como uma limitação fundamental na medida da posição de uma partícula, tomando-se as implicações da mecânica quântica e relatividade especial em conta. Isto depende da massa  da partícula.

Definições matemáticas[editar | editar código-fonte]

O comprimento de onda Compton  de uma partícula é dado por


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde

 é a constante de Planck,
 é a massa da partícula,
 é a velocidade da luz.

O valor CODATA de 2002 para o comprimento de onda Compton do elétron é 2.4263102175×10−12 m com uma incerteza padrão de 0.0000000033×10−12 m.[1] Outras partículas têm diferentes comprimentos de onda Compton.

Para ver-se isto, note-se que nós podemos medir a posição de uma partícula por incidir luz sobre ela - mas medir a posição precisamente requer luz de pequeno comprimento de onda. Luz de comprimento de onda pequeno consiste de fótons de alta energia. Se a energia destes fótons excede , quando um atinge a partícula onde cuja posição está sendo medida a colisão deve ter suficiente energia para criar uma nova partícula do mesmo tipo. Disto resulta em tornar oculta a questão da localização original da partícula.

Este argumento também mostra que o comprimento de onda Compton é a ponto de interrupção abaixo do qual a teoria quântica de campos – a qual pode descrever a criação e aniquilação de partículas – torna-se importante.

Pode-se fazer o argumento acima um tanto mais preciso como segue-se. Suponhamos que deseja-se medir a posição de um partícula dentro de uma precisão . Então a relação de incerteza para a posição e o momento diz que

 / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


então a incerteza no momento da partícula satisfaz

 / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Usando a relação relativística entre momento e energia, quando  excede  então a incerteza na energia é maior que , o que é suficiente energia paracriar outra partícula do mesmo tipo. Então, com um pouco de álgebra, nós vemos aqui uma limitação fundamental

 / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Assim, pelo menos dentro de uma ordem de magnitude, a incerteza na posição deve ser maior do que o comprimento de onda de Compton .

O comprimento de onda de Compton pode ser comparado com o comprimento de onda de de Broglie, o qual depende do momento de uma partícula e determina o ponto de corte entre o comportamento de partícula e onda na mecânica quântica.

O caso dos férmions[editar | editar código-fonte]

Para férmions, o comprimento de onda de Compton determina a seção transversal de interações. Por exemplo, a seção transversal para a dispersão de Thonsom de um fóton de um elétron é igual a

, / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde  é a constante de estrutura fina e  é o comprimento de onda de Compton do elétron. Para bósons gauge, o comprimento de onda de Compton determina a escala da interação Yukawa: desde que o fóton não tenha massa de repouso, o eletromagnetismo tem escala infinita.

O comprimento de onda de Compton do eléctron é um dos do trio de unidades de comprimento relacionadas, as outras duas sendo raio de Bohr  e o raio clássico do elétron . O comprimento de onda de Compton é obtido a partir da massa do elétron constante de Planck  e a velocidade da luz . O raio de Bohr é obtido de  e a carga do elétron . O raio clássico do elétron é obtido de  e . Qualquer um destes três comprimentos pode ser escrito em termos de qualquer outro usando a constante de estrutura fina :

 / 

equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





Fórmula da variação de Compton[editar | editar código-fonte]

Compton usou uma combinação de três fundamentais fórmulas representando os diversos aspectos da física clássica e moderna, combinando-os para descrever o procedimento quântico da luz[3].

  • Luz como uma partícula;
  • Dinâmica Relativística;
  • Trigonometria.

O resultado final nos dá a equação do espalhamento de Compton:

 / 

equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Onde:

 é o comprimento de onda do fóton antes do espalhamento,
 é o comprimento de onda do fóton depois do espalhamento,
me é a massa do elétron,
 é conhecido como o comprimento de onda de Compton,
θ é o ângulo pelo qual a direção do fóton muda,
h é a constante de Planck, e
c é a velocidade da luz no vácuo.

Coletivamente, o comprimento de onda de Compton é .




concentração quântica nQ é a concentração de partícula (i.e. onúmero de partículas porunidade de volume) de um sistema onde a distância interpartícula é igual ao comprimento de onda térmico de de Broglie ou equivalentemente quando os comprimentos de onda das partículas são tangentes ("se tocam") mas não se sobrepõe.[1][2]

Efeitos quanticos tornam-se mais apreciáveis quando a concentração de partículas é maior ou igual que a concentração quântica, a qual é definida como:

 / 

equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde:
M é a massa das partículas no sistema
k é a constante de Boltzmann
T é a temperatura medida em kelvin
 é a constante de Planck reduzida

Como a concentração quântica depende da temperatura; altas temperaturas irão colocar a maioria dos sistemas no limite clássico sem estes terem uma densidade muito alta, e.g. como uma anã branca.





correlação quântica é a mudança esperada nas características físicas à medida que um sistema quântico passa por um site de interação. Em outras palavras, o termo correlação quântica passou a significar o valor esperado do produto dos resultados nos dois lados.[1] Ela (por exemplo, emaranhamento[2][3] e discórdia[4][5][6]) é uma característica fundamental da mecânica quântica, que é conhecida por estar no centro de várias aplicações em potencial, como codificação superdensateletransporte quântico e criptografia quântica.[7]

Testes de Bell[editar | editar código-fonte]

No artigo de John Bell, de 1964, que inspirou os testes de Bell, supunha-se que os resultados A e B pudessem assumir apenas um dos dois valores, -1 ou +1. Concluiu-se que o produto também poderia ser apenas -1 ou +1, para que o valor médio do produto fosse

 / 

equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde, por exemplo, N++ é o número de ocorrências simultâneas ("coincidências") do resultado +1 nos dois lados do experimento.

Em experimentos reais, porém, os detectores não são perfeitos e geralmente existem muitos resultados nulos. A correlação ainda pode ser estimada usando a soma das coincidências, já que claramente os zeros não contribuem para a média, mas na prática, em vez de dividir por Ntotal, tornou-se habitual dividir por

 / 

equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


o número total de coincidências observadas. A legitimidade desse método baseia-se no pressuposto de que as coincidências observadas constituem uma amostra justa dos pares emitidos.

Seguindo as premissas realistas locais, como no artigo de Bell de 1964, a correlação quântica estimada convergirá após um número suficiente de ensaios para


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde aeb são configurações do detector e λ é a variável oculta, extraída de uma distribuição ρ (λ).

A correlação quântica é a principal estatística no CHSH e algumas das outras "desigualdades de Bell", cujos testes abrem caminho para a discriminação experimental entre a mecânica quântica, por um lado, e o realismo local ou a teoria das variáveis ocultas locais, por outro.[8][9]


Comentários

Postagens mais visitadas deste blog