equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





Em física, a dispersão de Rutherford é um fenômeno que foi explicado por Ernest Rutherford em 1909,[1] e levou ao desenvolvimento da teoria orbital do átomo. É agora explorado pela técnica de análise de materiais espectrometria de dispersão de Rutherford. A dispersão de Rutherford é também referida às vezes como dispersão de Coulomb porque baseia-se em forças eletrostáticas (Coulomb). Um processo similar provou o interior do núcleo nos anos 1960, chamado dispersão profunda inelástica.

Destaques da experiência de Rutherford[editar | editar código-fonte]

  • Um feixe de partículas alfa é direcionado a uma folha de ouro fina.
  • Muitas das partículas passaram através da película sem sofrer desvio.
  • Outras foram desviadas por diversos ângulos.
  • Algumas inverteram o sentido do movimento.

A partir destes resultados, Rutherford concluiu que a maioria da massa era concentrada numa região minúscula, positivamente carregada (o núcleo), rodeada por electrões. Quando uma partícula alfa (positiva) se aproximava o suficiente do núcleo, era fortemente repelida.[2] O pequeno tamanho do núcleo explicou a pequena quantidade de partículas alfa que foram repelidas em ângulos maiores. Rutherford demonstrou usando o método abaixo, que o tamanho do núcleo era inferior do que cerca de 

Teoria de Dispersão[editar | editar código-fonte]

Geometria de dispersão de Rutherford.

Principais pressupostos:

• Colisão entre uma carga pontual, mais um núcleo pesado com carga Q=Ze é um projétil leve com carga q=ze é considerada como sendo elástica.

• Momento e energia são conservados.

• As partículas interagem através da força de Coulomb.

• A distância vertical onde o projétil se encontra a partir do centro do alvo, o parâmetro de impacto b , determinam o ângulo de dispersão θ.

A relação entre o ângulo de dispersão θ, a energia cinética inicial

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


e o parâmetro de impacto b é dado pela relação

 (1,1) / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde z = 2, para partículas-α e Z = 79 de ouro.

Dedução da Transversal Diferencial[editar | editar código-fonte]

Na Figura , uma partícula que atinge o anel entre b e b + db é desviada num ângulo sólido dΩ entre θ e θ + dθ.

Por definição, a secção transversal é a constante de proporcionalidade

então

 (1,2) / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde 

A seção transversal diferencial torna-se então

 (1,3) / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


A partir da Equações 1,1 e 1,3 nós temos

 (1.4) / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


A Eq.1.4, é chamada seção transversal diferencial para a dispersão de Rutherford.

Nos cálculos acima, considera-se apenas uma única partícula alfa. Num experimento de dispersão, é preciso considerar vários eventos de dispersão e medir-se a fracção de partículas desviadas num determinado ângulo.

Para um detector em um ângulo específico em relação ao feixe incidente, o número de partículas por unidade de superfície, colidindo o detector, é dado pela fórmula de Rutherford:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Verificação da fórmula de Rutherford

Onde:

Ni = número de partículas alfa incidentes;

n = átomos por unidade de volume no alvo;

L = espessura do alvo;

Z = número atómico do alvo;

e = carga electrónica;

k = constante de Coulomb;

r = distância entre o alvo e o detector;

KE = energia cinética das partículas alfa;

θ = ângulo de dispersão.

A variação prevista, de partículas alfa detectadas, com ângulo é seguida de perto podados do contador de Geiger-Marsden, mostrados na Figura abaixo.

Cálculo do tamanho nuclear máximo[editar | editar código-fonte]

Espalhamento com diferentes parâmetros de impacto.

Para colisões frontais cabeças entre partículas alfa e o núcleo, toda a energia cinética  da partícula alfa é transformada em energia potencial e a partícula está em repouso.

A distância entre o centro da partícula alfa e o centro do núcleo (b) neste momento é um valor máximo para o raio, se é evidente a partir da experiência que as partículas não atingiram o núcleo.

Aplicando a energia potencial de Coulomb entre as cargas nos electrões e no núcleo, pode-se escrever:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Reorganizando,

 (1,6) / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Para uma partícula alfa:

Substituindo estes valores na eqn.1,6, dá o valor do parâmetro de impacto de cerca de  .

O verdadeiro raio é cerca de .




Uma colisão de Coulomb é uma colisão elástica binária entre duas partículas carregadas interagindo através de seu próprio campo elétrico. Como com qualquer lei do inverso do quadrado, as trajetórias resultantes das partículas em colisão é uma órbita Kepleriana hiperbólica. Este tipo de colisão é comum em plasmas onde a energia cinética típica das pertículas é grande o suficiente para produzir um desvio significativo das trajetórias iniciais das partículas em colisão, e o efeito cumulativo de muitas colisões é considerado como alternativa.

Tratamento matemático para plasmas[editar | editar código-fonte]

Em um plasma uma colisão de Coulomb raramente resulta em uma grande deflexão. O efeito acumulativo de muitas pequenas colisões, entretanto, é muitas vezes maior que o efeito das poucas colisões de grande ângulo, portanto, é instrutivo considerar a dinâmica da colisão no limite das pequenas deflexões.

Pode-se considerar um elétron de carga -e e massa me passando um íon estacionário de carga +Ze e muito maior massa a uma distância b com uma velocidade v. A força perpendicular é (1/4πε0)Ze2/b2 na maior aproximação e a duração do encontro é sobre b/v. O produto destas expressões dividida pela massa é a carga em velocidade perpendicular:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




A hipótese de De Broglie[editar | editar código-fonte]

Em 1924, Louis-Victor de Broglie formulou a hipótese de Broglie, alegando que toda matéria[15][16] tem uma natureza ondulatória, ele relacionou comprimento de onda e momento:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Esta é uma generalização da equação de Einstein acima, uma vez que o momento de um fóton é dado por ,  / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



onde c é a velocidade da luz no vácuo.




efeito Hall quântico, também chamado de efeito Hall quântico inteiro, é uma versão do efeito Hall em mecânica quântica, observado em sistemas bidimensionais de elétrons[nota 1] [1][2] submetidos a baixas temperaturas e fortes campos magnéticos, em que a condutividade Hall  sofre certas transições quânticas para assumir valores quantizados:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Nessa expressão  é o canal,  é a tensão de Hall,  é a carga do elétron e  é a constante de Planck.[3]





Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]

Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 ,  


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]





Energia do fotão (português europeu) ou energia do fóton (português brasileiro) é a energia carregada por um único fóton. A quantidade de energia está diretamente relacionada à frequência e ao comprimento de onda eletromagnética do fóton. Quanto maior for a frequência do fóton, maior a sua energia. Da mesma forma, quanto maior for o comprimento de onda do fóton, menor a sua energia.

A energia do fóton é uma função somente do comprimento de onda. Outros fatores, como intensidade da radiação, não afetam a energia do fóton. Em outras palavras, dois fótons de luz com a mesma cor e, portanto, o mesmo comprimento de onda, terão a mesma energia do fóton, mesmo se um for emitido por uma vela de cera e o outro for emitido pelo Sol.

A energia do fóton pode ser representada por qualquer unidade de energia. Umas das unidades mais comuns para denotar a energia do fóton é elétron-volt (eV) e joule (bem como seus múltiplos, como microjoule). Como um joule é igual a 6,24 × 1018 eV, as unidades maiores podem ser mais úteis para denotar a energia de fótons com frequências e energias mais altas, como o raio gama, ao contrário dos fótons de menor energia, como os da região do espectro eletromagnético de radiofrequência.

Se os fótons, de fato, não possuem massa, a energia do fóton não seria relacionada à massa através da equivalência E = mc2. Os únicos dois tipos de tais partículas sem massa observados são os fótons e os glúons.[1] Entretanto, o postulado de que os fótons não possuem massa é baseado na crise que resulta de outras teorias em mecânica quântica. Para que outras teorias, como a invariância de gauge e a chamada "renormalização" sobrevivam sem considerável revisão, os fótons devem permanecer sem massa no domínio das atuais equações.[2] A alegação é contestada em outros meios.[3] Diz-se que fótons possuem massa relativística (isto é, massa resultante do movimento de um corpo material em relação a outro). Além disso, algumas hipóteses propõem que toda massa ou "massa de repouso" pode ser composta de massa relativística acumulada, secundária ao movimento, uma vez que nenhum corpo material esteja ou possa estar em "repouso" em relação a todos os campos. Nessa hipótese, assim como o movimento se torna zero, a massa também se torna zero. Por outro lado, os fótons possuem movimento e energia variável em relação à frequência e ao comprimento de onda, sugerindo que várias formas do foton têm, cada uma, equivalência de massa diferente. Assim, a equação "E = mc2" mostraria que a massa e o movimento são conceitos indissociáveis e e fundamentalmente substituíveis para toda a matéria.[4]

Fórmula[editar | editar código-fonte]

equação para a energia do fóton[5] é

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Onde E é a energia do fóton, h é a constante de Planckc é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.

Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.

Como ,   / 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.

Em química e engenharia óptica,

é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[6]


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  



onde f é a frequência, a equação da energia pode ser simplificada para





A energia de Fermi é importante na hora de entender o comportamento de partículas fermiônicas, como por exemplo os elétrons. Os férmions são partículas de spin semi-inteiro para as quais verifica-se a validade do princípio de exclusão de Pauli - que dita que dois férmions idênticos não podem ocupar simultaneamente o mesmo estado quântico. Desta maneira, quando um sistema possui vários elétrons, estes ocuparão níveis de energia maiores a medida que os níveis inferiores estejam preenchidos.

A energia de Fermi é um conceito que tem muitas aplicações na teoria dos orbitais atômicos, no comportamento dos semicondutores e na física do estado sólido em geral.

Em física do estado sólido a superficie de Fermi é a superficie no espaço de momentos na qual a energia de excitação total se iguala à energia de Fermi. Esta superfície pode ter uma topologia não trivial. Simplificadamente se pode dizer que a superfície de Fermi divide os estados electrônicos ocupados dos que permanecem livres.

Enrico Fermi e Paul Dirac, derivaram as estatísticas de Fermi-Dirac. Estas estatísticas permitem predizer o comportamento de sistemas formados por um grande número de elétrons, especialmente em corpos sólidos.

A energia de Fermi de um gás de Fermi (ou gás de elétrons livres) não relativista tridimensional se pode relacionar com o potencial químico através da equação:

 


equação Graceli  tensorial quântica [2]

 [DR] =            .  /

/ G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


onde εF é a energia de Fermi, k é a constante de Boltzmann e T é a temperatura. Portanto, o potencial químico é aproximadamente igual a a energia de Fermi à temperaturas muito inferiores a uma energia característica denominada Temperatura de Fermi, εF/k. Esta temperatura característica é da ordem de 105K para um metal a uma temperatura ambiente de (300 K), pelo que a energia de Fermi e o potencial químico são essencialmente equivalentes. Este é um detalhe significativo dado que o potencial químico, e não a energia de Fermi, é quem aparece nas estatísticas de Fermi-Dirac.

Comentários

Postagens mais visitadas deste blog