equação Graceli quântica [] G* = = [ ] ω , , / T] / c [ [x,t] ] = |
equação Graceli tensorial quântica [1] G [DR] = .= = |
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
G [DR] = =
G [DR] = =
EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.
G [DR] = .=
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = =
G [DR] = =
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
G [DR] = É O TENSOR GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .
Na física quântica, a amplitude de dispersão é a amplitude de probabilidade da saída onda esférica[1] em relação à onda plana de entrada no processo de dispersão do estado estacionário[2] .
Este processo de dispersão é descrito pela seguinte função de onda
- /
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
onde é o vetor de posição; ; é a onda plana de entrada com o número de onda k ao longo do eixo z; é a onda esférica de saída; θé o ângulo de dispersão; e é a amplitude de espalhamento. A dimensão da amplitude de dispersão é o comprimento.
A amplitude de dispersão é uma amplitude de probabilidade; a secção transversal do diferencial como uma função de ângulo de dispersão é dado como o seu módulo quadrado[3],
- /
O comprimento de onda Compton pode ser entendido como uma limitação fundamental na medida da posição de uma partícula, tomando-se as implicações da mecânica quântica e relatividade especial em conta. Isto depende da massa da partícula.
Definições matemáticas[editar | editar código-fonte]
O comprimento de onda Compton de uma partícula é dado por
- , /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde
- é a constante de Planck,
- é a massa da partícula,
- é a velocidade da luz.
O valor CODATA de 2002 para o comprimento de onda Compton do elétron é 2.4263102175×10−12 m com uma incerteza padrão de 0.0000000033×10−12 m.[1] Outras partículas têm diferentes comprimentos de onda Compton.
Para ver-se isto, note-se que nós podemos medir a posição de uma partícula por incidir luz sobre ela - mas medir a posição precisamente requer luz de pequeno comprimento de onda. Luz de comprimento de onda pequeno consiste de fótons de alta energia. Se a energia destes fótons excede , quando um atinge a partícula onde cuja posição está sendo medida a colisão deve ter suficiente energia para criar uma nova partícula do mesmo tipo. Disto resulta em tornar oculta a questão da localização original da partícula.
Este argumento também mostra que o comprimento de onda Compton é a ponto de interrupção abaixo do qual a teoria quântica de campos – a qual pode descrever a criação e aniquilação de partículas – torna-se importante.
Pode-se fazer o argumento acima um tanto mais preciso como segue-se. Suponhamos que deseja-se medir a posição de um partícula dentro de uma precisão . Então a relação de incerteza para a posição e o momento diz que
/
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
então a incerteza no momento da partícula satisfaz
/
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
Usando a relação relativística entre momento e energia, quando excede então a incerteza na energia é maior que , o que é suficiente energia paracriar outra partícula do mesmo tipo. Então, com um pouco de álgebra, nós vemos aqui uma limitação fundamental
/
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
Assim, pelo menos dentro de uma ordem de magnitude, a incerteza na posição deve ser maior do que o comprimento de onda de Compton .
O comprimento de onda de Compton pode ser comparado com o comprimento de onda de de Broglie, o qual depende do momento de uma partícula e determina o ponto de corte entre o comportamento de partícula e onda na mecânica quântica.
O caso dos férmions[editar | editar código-fonte]
Para férmions, o comprimento de onda de Compton determina a seção transversal de interações. Por exemplo, a seção transversal para a dispersão de Thonsom de um fóton de um elétron é igual a
, /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
onde é a constante de estrutura fina e é o comprimento de onda de Compton do elétron. Para bósons gauge, o comprimento de onda de Compton determina a escala da interação Yukawa: desde que o fóton não tenha massa de repouso, o eletromagnetismo tem escala infinita.
O comprimento de onda de Compton do eléctron é um dos do trio de unidades de comprimento relacionadas, as outras duas sendo raio de Bohr e o raio clássico do elétron . O comprimento de onda de Compton é obtido a partir da massa do elétron , constante de Planck e a velocidade da luz . O raio de Bohr é obtido de , e a carga do elétron . O raio clássico do elétron é obtido de , e . Qualquer um destes três comprimentos pode ser escrito em termos de qualquer outro usando a constante de estrutura fina :
- /
equação Graceli tensorial quântica [2]
G [DR] = .= /
/ G* = = [ ] ω , , / T] / c [ [x,t] ] =
A massa de Planck é especial porque ignorando fatores de e igualmente, o comprimento de onda de Compton para esta massa é igual a seu raio de Schwarzschild. Esta distância especial é chamada comprimento de Planck. Este é um simples caso de análise dimensional: o raio de Schwarzschild é proporcional à massa, onde o comprimento de onda de Compton é proporcional ao inverso da massa.
equação Graceli tensorial quântica [2] G [DR] = .= / / G* = = [ ] ω , , / T] / c [ [x,t] ] = |
Comentários
Postar um comentário